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L INTRODUCTIO;\l

An alternate spline of degree k can be defined til the following way:

DEFINITION I. Let T = { T,l be a knot seq uence. The i th alternale spline
of degree k (order k + I, k ~ 0) for the knot sequence T, denoted by
G i.k + 1.<, is defined recursively by the following procedure:

and

{
I,

Gi.I,(X) = 0,
T,~X<Ti+ I

otherwise
(LI )

G',k+l,,(x)=A'.k+lt(X)-A'\2,k'IJX) ( 1.21
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for k ~ 1, where
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with

and

otherwise

(1.3)

(1.4)

{
O,

IIi,r(X) = L
x < r i

x~ri
(L5)

Whenever the knot sequence r can be inferred from the context, we write
G,.k instead of GU,n Au instead of A"k,n (5 1k instead of bur and II, instead
of III,T'

We can use equalities (1.1 )-( 1.5) to express explicitly the lower degree
alternate splines for a given knot sequence, For example, when r is
uniformly spaced, we have

(x - Ti)/Ar,

1,

(r i + 3 - X)/LlT,

0, otherwise,

64()!51/2·4

I (x-r i )2/4(LlT)2,

1/4 + (x - r i+ I )/2Llr,

1 - (T i f 3- .~Y/4(Llr)2

Gdx)= -(x-r i + 2)2/4(LlT)2,

3/4 - (x - T i + 3)/2Llr,

(T i + 5- x)2/4(Llr)2,

0,

ri+l~x<r,t2

ri+2~x<ri+3

otherwise
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( (x~rY/24 (Ar)l,

1/24 + (x - r,+ I )/8Ar

+ (x - r,+ 1)1/8 (Ar)1,

1/4 + (x ~ r , +1)/2Ar

+ (r , +1 ~ x)l/24(Ar)3

- (x~r'+1)3/12 (Ar)l,

2/3 + (x - r , +3)/4Ar

C,4(x)=\ ~(x-~r,t3)1/4(Ar)1,

3/4 ~ (x ~ r 1+ 4)/2Ar

- (r , + S ~ x)3/12 (Ar)l

+ (x - r , +4 )3/24 (Ar )3,

7/24 ~ 3(x - r,+ s)/8Ar
+(x-r,+s)1/8 (Ar)1,

(r
'
+7- x )3/24 (Ar)3,

0,

r , +4:(x<r'1S

r,+S:(x<r1t6

r,t6:(x<r,+7

otherwise

where Ar is the distance between two consecutive knots. Note that
C12 is composed of polynomials of degree one and zero alternately, Cd is
composed of polynomials of degree two and one alternately, and, C,A is
composed of polynomials of degree three and two alternately. Examples of
G/.1, G'.3 and C,4 for a uniformly spaced knot sequence r are shown in
Fig. I.

When a set of 3D vectors {C;} is given, by using alternate splines defined

a / /
b

K K

C

K K

FIG 1. Examples of alternate splines: (a) C". (b) C,.,. (c) C'A'
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in Definition 1, we can define alternate spline curves of degree k the
following way:

or

r(x) = L C ,G2, + I,k + l,r(X),

(1.6 )

(1.7)

Parametric curves constructed this way are of some interest in that they are
composed of polynomials of degree k and k - 1 alternately and, still, are of
class Ck 'as well be seen later in Section 2,

2, PROPERTIES AND PROOFS

Properties of alternate splines will be discussed in this section. We shall
call simple facts "propositions" and leave them without proof.

Let r= {I/} be a knot sequence and r+xo= {I/+xolr/Er}, k~O.

PROPOSITION I. (i) G
"
k+l.r+xo(x+xO)=G

'
.k+l.r(x),

(ii) Gu + I.r depends on I""" I'+2k+I' only.

PROPOSITION 2. The support ol G I.k + I' for all values ol i and k, is finite.
Marc prccisely,

G,.k + ,(x) = 0

PROPOSITION 3. We have

for x ¢ [I I' r I I 2k I J.

(i)
[(s '1/2]

L G21.k + Lr(X) = L G2U + Lr(X) = 1
I ~ rI r 2k + I )/2]

and

rIs 2 )/2]

(ii) LG2i~1,k+I.r(X)= L G2itl ,k+l.r(x)=1
I~ llr 2k)/2]

for all XE (In rJ.

A principal property of alternate splines IS gIven III the following
proposition, We need a definition first.

DEFINITION 2. For the knot sequence r = {I,), J,+ 2/ = [I i+ 2/' r 1+ 2/+ I]'
1=0, 1, ... , k, are called the even intervals of the alternate spline Gik + Lr and
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f't2/-1=[T'tel I' T't21], 1=1,2, ...,k, are called the odd intervals of

G,.k + I.r'

PROPOSITION 4. Gu + I.T is a polynomial oj" degree :::; k in an eren interval
and a polynomial oj" degree :::; k - 1 in an odd interval.

The next theorem will be discussing the effect of multiple knots in the
knot sequence for alternate splines. But, first of all, the definition of mul­
tiple knots.

DEFINITION 3. Let T, = T{ (.I' :::; t) be two knots contained in
[T

"
Tit 2k + \J such that no other knots in [T" T , t ek + \J equal to T, except

T'1 I,···, T{ \. If there are n even intervals ofG,.ktl,r, I,fel/tll' 1=0, I, ... ,
n-l, contained in [Tn TrJ then T,=T 1 is called an (n) multiple knot of
G,.k + I.r of multiplicity n.

THEOREM I. The fCI//OIving two statements are true fCJr a// non-negative
integer k:

I (k): GIk I 1(x) > 0, X E ( T,. T I , ek / \ )

II (k): If T, is an (n) multiple knot of G,.k 1 I and n:::;k -1 then Gu / \
has continuous (k-l-n)th derivative at T, but the (k-n)th derivative
does not exist: if n = k then G,.k 1 \ is not continuous at T,: if n = k + 1 then
G,.k+ I =0.

The proof of this theorem requires several auxiliary results. We will first
prove these results and then Theorem I.

LEMMA I. If the statements I (/) and II (/) in Theorem 1 hold fClr
1= J, 2, ... , k - J then Fir any integer j, O:::;j:::; k, we can ahmys find j + 1
positive real numhers CI , 1=0, I, ... ,j, such that

/

G~)1 \(x)= I (-I)ICIG ,tW III(X)

I ()

(2.1 )

fCJr a// x in [T" T,+ 2k + IJ except, possihly, at a finite numher oj knots where
(2.1) does not hold.

Proal When j = 0 the lemma is obviously true. To prove the lemma is
true for an arbitrary j ~ J, assume the lemma holds for all m <j. We have
by induction hypothesis that there exist j positive real numbers CI ,

1=0, I, ... , j - I, such that, except at a finite number of knots,

1 \

G~L\)(x)= L (-1) I C IG'tW //2(X)
I~O

(22)
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for all x in [T;,T;+2kt-iJ. Now consider A;t2l,k 11-2,1=0, 1, ...,j, In two
differenteases: 6; + 2U _1 + I = 0 and #- O.

If (); t 21.k i +- I = 0 then we have by definition that

A, t 2U 1 + 2 = n, + 21'

Therefore, A; + 2U i + 2 equals zero at all points except T, + 21' On the other
hand we have by I (k -j) and II (k -j) that

G, + 2U I + I = O.

Hence, in this case, we have

(2.3 )

for all x except the point T; + 21'

If (), I 2U 1+ I #-0 then G;t-2IJ i+ I can have at most one (k-j) multiple
knot of multiplicity k-j and it is either T;+21 or T;+2(1,I)' Therefore by
II (k -j) it can be concluded that G; + 2U i + I is continuous everywhere
except, possibly, at either T;+-21 or T"2II+ II' But then we have, when
x E R '\ (T, +- 21, T; + 2(1 +- I I },

A;t-2IJ 1+2(X)=Gil-21.k 1+,(X)/6;t2U i+I'

Therefore if we set

(2.4 )

_ { 1/b; +- 21J I I I ,

ill- I,
b; + 21J j + I#-O
otherwise,

(2.5)

then when x E R\ {T;+ 21, T;+ 2(1+ I)} we have, from (2.3) and (2.4),

A;+2U -1+Ax) = ;';+2Ik j+ IG i + 2/.k i+ I(X).

This is also true for A; + 2(1 + I ),k 1+ 2' Hence from the definition of
G,t 2/.k It 2 we have that, for all x E R\ {T i +2" T, +- 211+ Ii' T,t 2(1+ 2)},

- ;"+2(1+ II.k-l+ i G i + 2(1+ I).k i+ I(X),

1= 0, I, ... ,). Substitute these equations into (2.2) then we have, for all
XE [T I , T;+ 2k+ I] \ {T;, T,+ I,· .. , T i + 2k + I}, that

I

GW+I(X)= L (-I)'(C,_, +CI )A i +2I.k-1+IG , +2I.k-i+I(X)
I~O

where C 1= C, = O. From (2.5) and I (k - j) it can be seen that
},i + 21.k i + , > 0 and the proof of the lemma is complete.
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LEMMA 2. If the statements I (k - 1) and II (k - I) in Theorem 1 are
true for a positive integer k (k ~ 1) then

(i) IfT i is an (k) multiple knot olG'k I I then

"

Gu + [(x) = n,(x) -I G, 12J\") ds/(\ 12';

(ii) If T'+2k j I is an (k) multiple knot of Gu I I thi'n

!".\

G'k+l(X)= I Gu (sjc!.I!(),,-n't2(x).
"{/

Proof It suffices to prove (i). Since T, is a (k) multiple knot of Gik t [. it
is also a (k) multiple knot of Gu. We have then by II(k - I) that
G'.k(X)=O or, equivalently, (5,.k=O. Therefore A,.HI =n,.

Furthermore, since T, is a (k) multiple knot of G ,J • I. it follows that
T'12*T,+ 2k+ I' But then by I (k-l) that

iT,., IG,"J(S) ds *0

or. equivalently. ()i+ 2.k *O. Hence

A,+2J+l(X)= I' G"2.ds)dsjb i '2.k
°T

and (i) follows.

LEMMA 3. A ri'al-valued function f has n distinct ::eros in thi' inti'nal
[a, bJ. Iff satis/leI" the following l\t"o conditions:

(i) f is continuous at i'ach of thi'se n ::(,/"0.1, and

(ii) I' doi'S not exist at m points in (a. h) thi'n thi' numher of distinct
zeros off' in (a, h) is at least n - 1 .- m.

Proof Assume the n distinct zeros of f are: a:( x I < X2 < ... < x" :( h. If
I' exists at all the points of the open interval (x j, Xi + I) then by Rolle's
Theorem we know that!", has at least one zero in (x" Xi t I)' Since. by (ii),
there are at most m distinct open intervals in the n - 1 open intervals
(.x" x,+ 1), i = I, .... n- I, which contains one of the points where I' does
not exist, therefore, the number of distinct zeros ofI' is at least n - I - m.

LEMMA 4. Let [N I.N2....,NI'] (N\<N2<"'<NI') he the set of
positivi' integers such that each numher in this set is the multiplicity of some
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multiple knot of G i.k + I' GI.k + I has no multiple knot of multiplicity k or
greater. For each tEO { 1, 2, ... , p} define

A, = {r II r I is a multiple knot of Gik + I with multiplicity? N ,]

and set No = O. Furthermore, for each non-negative integer j, let Zj denote the
number of distinct ::eros of G~.~+ I in (r" r i + 2k + ]). Then for any
t EO {I, 2, ... , p} if

k~ I-NI'+I ,~j<k-I-NI' 1

and II (k) in Theorem I holds then

Prool The proof will be discussed in four cases.

Since in this case none of r i and r 1 + 2k + I is a multiple knot of G I.k + I of
multiplicity greater than NI' I and j < k - I - NI' I' it follows by II (k)
that Gj.~f ] is continuous at r , and T i C 2k + I' Hence by Proposition 2 we can
conclude that

G~~ + I (T i) = G~~ + I (T i+ 2k + I ) = 0,

i.e., Gj.~ + I has Z/ + 2 distinct zeros in [T I' T1+ 2k + I]. Furthermore we can
also tell that Gj.~+ I is continuous at all these zeros because by
Proposition 4 and II (k) we know that if Gj~ + I exists at x then GW~ I is
continuous there. Next look at the points where G).~+t Ii does not exist. By
II (k) we know

k-I-Np+ 1 ,~j<k-I-Np 1

then Gj.~:li does not exist at the points of AI' + lIS; (T I' T,+ 2kt I) only.
Hence by Lemma 3 we have

or,

Zj + 1 ? Zj + 1 - IAp + 1- I I.

1I. r i EO AI' + I I' T 1 + 2k + I ¢ AI' + I 1 .

Since the fact thatj<k-I-NI' 1 implies that Gj:~+I(Ti+2k+I)=0, it
follows that G~:~+ I has at least Zj + I distinct zeros in [r" T ,+ 2k + I] and
G~.~+ I is continuous at all these points.
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Since G~.~++1/ does not exist only at the points of A p + 1 I and 1; E A p + 1 I'

it follows that G~.~++1/ does not exist in (1;, 1 1+ 2k + I) only at most at
I A pIli I - I points. Hence by Lemma 3 we have

ZI + I:? (ZI + 1) - 1- (I A p + 1 11- I)

=ZI+I-IAp + 1 II.

III. 1 , $A p + 1 1,1'+2k+IEApII /.

This case can be processed the same way as case II.

IV. 1/, 1 It 2k + 1 E Apt 1 I'

G~.~+ 1 has Zj distinct zeros in (Ii' 1; + 2k + I), and G~.~+ 1 is continuous at
these points. Since G~f~ \l does not exist only at the points of A p + 1 I and
1;, l ,t 2k+ [EA p + 1 I' it follows that in (1,,1;+2k+l) G~.~:li does not exist
at at most, lAp t I I I -- 2 points. Hence by Lemma 3 we have

Z; + I :? Z, - I - (I A p + I II - 2)

=ZI+I-IA,irl II

and the proof of Lemma 4 is complete.

LEMMA 5. 1( the statements I (I), 1=0, 1,..., k - I, and II (I), 1=0, 1, ... ,
k, are all true then G,k+I(X)#O/CIl' all x in (1;, l i +2k+l)'

Proof There are three cases to consider:

I. G;.k + 1 has (k + I) multiple knot.
In this case (1;, 1,+ 2k + I) is empty and the lemma is obviously true.

II. G
'k

+ I has (k) multiple knots but no (k + I) multiple knot.
In this case a (k) multiple knot would either be Ii or 1 1+ 2k + I' Without

loss of generality we may assume that 1 I is an (k) multiple knot of G'.k + 1 •

In that case we have by Lemma 2 that

G;k tl(x)=n;(x)-r G, + 2.k(S) ds/b, + 2.k'
II +- 2

Then by I (k - I) we have, for x E (1" Ii + 2k + I)' that

b/+ 2.k > J' G I +2.k ( s) ds > °
"(-I-2

or

ni(x» r G'+2.k(s)ds/b i+ 2.k ·
T , -j- 2
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G'.k + I(X ) = 7[ ,( x ) - i\ G, + 2.k ( S ) ds/ [) ,+2.k > 0
""'I::
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for all x E (", '1+ lk + I).

III. G,.k + I has no multiple knot of multiplicity k or greater.

In this case let {N 1 , N 1 , ... , N,,} (N 1 < N 1 < ... < Nr,) be the set of positive
integers such that each number in this set is the multiplicity of some mul­
tiple knot of G'.k + I' For each t E { 1, 2, ... , p} define

A, = ('11'1 is a multiple knot of G,.k \ I

with multiplicity:? N,]

and set No = 0, N" + I = k - I. For each nonnegative integer j, let Z/ denote
the number of distinct zeros of G~~)+ I in (", "+lk+ I)' Then for each
t E { I, 2, ... , p} by applying Lemma 4 N" + 1 , - N" , times we have

Zk-I-Np_,:?Zk-I-Np,1 ,+(l-IA,,+I ,IHN,,+I,-N,,_,). (2.6)

(2.6) is true even when t = 0 as can be seen below.

L N" = N" + 1= k - I.

In this case (2.6) is obviously true when t = O.

II. N,,<N"II=k-l.

Then for any nonnegative integer j:( k - 1- N I" Gj2 + 1 is continuous on
[", ',+lk + IJ and G~.!}+ 1(") = G;.2+ 1("+ lk + Il = O. Hence G~.~)+ I has Zr + 2
distinct zeros in [';'" + lk + IJ. By applying Rolle's theorem we have, for
each O:(j < k - 1 - N",

Therefore

and this is exactly what we have when 0 is substituted into (2.6) for t.

Hence (2.6) is true for tE{O, 1,2, ... ,p}.
By adding (2.6)'s up for t=O, 1,.",p we have

"Zk I:?ZO+ L (I-IA"+I_,IHN"+I,-N" ,)
,~O

,,+1
=Zo+ I (I-IA,IHN,-N, I)'

,~ I

(2.7)
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II I-I

I (N,-N, I)=k-I
l-'-' I

and

(2.7) can be further simplified as

I'

Zk I?Zo+k-l- I IA,I(N,-N, I)
,~ 1

fI'
=Zo+k-I- Int.

t~ 1

(2.8)

Now if G,k + 1(x) = 0 for some x in (r" r, +- 2k + I), I.e., Zo? I, then from
(2.8) we get

iff

Zk I?k - Int·
t~ 1

(2.9)

On the other hand, by Lemma I we know there exist k positive numbers
C t , 1=0, I, ... , k - I, such that, except for a finite number of knots where
G;.~·~ \1 does not exist,

k 1

G~~ + II)(X) = I (-I)' C,G i + 2'2(X)
,~ 0

(2.10)

for all x in [r" r ,+ 2k + I]. But, if none of r, and r, + 2k+ 1 is a multiple knot
of G,k + 1 then from (2.10) we arrive at the following result:

iff

Zk 1 = k - 1- I nt
t ~ 1

which is contrary to (2.9). Hence Gik + 1(x) # 0 for all x in (r" r,+ 2k + I)'

Noll' the Proof of Theorem I. By induction on k. When k = 0 the
theorem follows directly from (1.1). Now assume the theorem holds for all
m < k and prove that it is also true for k. We will prove II (k) first and then
I (k). The proof of II (k) is discussed in three cases.

Case I: n = k + I.

In this case both Gik and G i + 2.k have a multiple knot of multiplicity k,
and so by II (k - I), Gi.k == 0 and G, + 2.k == O. But then Gi.k i 1 == 0 too!



ALTERNATE SPLINE: A GENERALIZED B-SPLINE

Case II: n = k.
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In this case either 'lor '1+2k+ I is a (k) multiple knot of G ,.k + I' say, 'I'

Then by Lemma 2 we have

Gi,I, + I (x) = n ,(x) ~r GI t 2.k (s) ds! 15 j I 2.k>
c"

and so G',k + 1 is not continuous at T"

Case III: n~k-l,

In this case a (n) multiple knot of G,.k will be a (n) or (n-I) multiple
knot of G,.k' This is also true for Gj + 2.k . No matter which case happens

since in this case (, j, 'j + 2k I) #-°and (" + 2' 'j + 2k + 1 ) #-° it follows from
I (k - 1) and the definition of G'k + 1 that

G,k + 1(x) =rG"d s ) dS/15',k ~r G j+2,J\') ds/(), + 2.k'
'I [r,

(2.1\ )

therefore Gu + 1 is continuous everywhere. If n < k - I then, SInce by
II (k - I) we know that Gu and G,+ 2.k have at least continuous
(k-2-n)th derivative at (n) multiple knots of G,k+I' it follows from
(2.11) that Gi.k+ 1 has continuous (k - I - n)th derivative at (n) multiple
knots. Next we shall show that G~.L';I does not exist at (n) multiple knot.

Let 'I t 2; be a (n) multiple knot of G',k t I' If n = k - 1 then 'It 2, = 'I'
T1T2 , or '1,2kl-l' Say, '1+2;=',' Since ('i",+2/. I) and (',+2,

T j + 2k + I )#-0, by I (k-I), (1.2) and (1.3) G 'k + 1 can be expressed as

However. since 'I is a (k - 1) multiple knot of G,k> it follows by Lemma 2
that

Gu(s) = ni(s) - r' Gil 2,k dt) dt/15 i+2k 1

"T,ts

and so Gu is not continuous at '" Therefore, the derivative of G',k t I(X)

does not exist at '" The cases when, i + 2; = 'i + 2 and, j + 2k + I can be proved
in a similar way.

If n < k - I then by the fact that Gj,i + \ n I is continuous at r i + 2, and
Lemma I we can find k - n positive numbers C/, 1=0, I, ... , k - I -- n, and a
neighborhood, N('1+2;), of 'j+2; such that for all x in N(T j+2,)
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k I /I

GiLll"I(X)= L (-lj/C/G
'
+ 21I1 '2(X)

I :c ()

+ L (-I)ICIG'~21.1I+2(X).
I" I 2) 1.1

(2.12)

Since, by II (n + I ), the derivative of the last term of (2.12) exists at T1+ 21'

to prove that the derivative of G ,k + I at T
'

• 21 does not exist, we only have
to show that the derivative of

CI 2 G '+211 21.11+2-('1 IG'+211 11.lIt 2+CjG,+21.11 I 2

at ',+21 does not exist. Rewrite (2.13) as

(CI 2 A 'i211 21.1I+2- CI A ,+211+ 1 1. 11 12)

(2.13 )

Then the first part can be ignored again because derivative of it at T, + 2/

exists. Now since Til 2j is a (n) multiple knot of G 1+ 2/.11 + I and a (n) multiple
knot of G,+ 21 I 1111; I' by Lemma 2 the second part of (2.14) can be formed
as

(2.15 )

where

h = (CI 1 + C)/(b ,+2fi+ 1).11' b,+ 2/.11 + I)'

('=(CI 2+ C/ 1)/b,+2(1 11.11+1>0,

d=(C/ 1 +C/)/b,+2/.II+I>0.

Derivative of the first part of (2.15) at T'+2j exists. But derivative of the
second part at " + 2./ does not exist. Therefore Gj.1~';1 does not exist at the
(n) multiple knot 'i+ 2j'
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Now the proof of l(k). If x E (, i' 'i + 2) then by l(k - 1) and Proposition 2

we have Au+l(x»O and Ai+U+I(x)=O. Therefore

(2.16)

This is also true for (, i+ 2k _ I' 'i + 2H 1)' Hence to prove I (k) we only have
to show that Gu + I >0 on ['i+2, 'i+2k I].

Now assume, on the contrary, that GiJ + 1(y) < 0 for some y in

['i+2' '1+2k I]' Since ('i' 'i+2k+I)#0, 'I can not be a (k+ I) multiple
knot of Gu + I' Hence we have only two cases to consider: 'i is not a mul­
tiple knot, and, " is an (n) multiple knot of Gik + I but 0 < n ::;; k.

Case I. "is not a multiple knot of G,.k + I'

In this case G,J + I must be continuous. For, otherwise, G i.k + I would
have a (k) multiple knot and it could only be 'i+2k+1' but then

(""'+2k11)=('i"i+2) and by (2.16) we have GU+ICv»O contrary to
the assumption. However, if G U + I is continuous in ['''''+2k"l] and
(, i, 'i + 2) # 0 then by (2.16) and Bolzano's theorem, G i .k + I has a zero in
('" .1'). a contradiction to Lemma 5.

Case I I. "is an (n) multiple knot of GiJ + I and I ::;; n::;; k.
[n this case by Lemma I there exist C! > 0, 1=0, I, ..., k - n, such that

k n

Gj.~~';)(x)= L (~I)!C!Gi+2!.n+l(X)
!~O

(2.17)

for all x in [,,,, J+ 2k+ I] except at a finite number of knots. Since" is an
(n) multiple knot of GiJ + I we have by Lemma 2 that if n # 0 then

G i.n. I (x) = TCi(X) ~r G, + 2.n(S) ds/b i+ 2.,,,
TI-t:!

and consequently

G i.n + I ( ,,) > 0 and G i.n + IE C('i' + X). (2.18 )

(2.18) is also true when n=O by checking the definition of Gil' Further­
more, since 'i is an (n) multiple knot of G i.k + I' it follows that

'i I 2n < 'i + 2n + 1, and therefore

G i+2!.n+ I EO' C( - x, 'i+2n+ I),

Consequently, by Proposition 2,

I = I, 2, ... , k ~ n.

I = I, 2,..., k - n. (2.19)
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But then by (2.17), (2.18), and (2.19) we have

k n

I (_1)1 elG, ~21.11 e 1('i) > °
I~()

and

k - 11

I (-I)IC/GI+21.1I~IEC["""211+1)·
/~O

Therefore there exists an I; > °such that

and

for XE("",+i:).

Since for j = I, 2, ... , k -- n we have

G~.~ //(x) = r' G:.~) + I (.I') ds,
'c,

it follows that

X E ('" 'I + f,),

for XE(',,',+;;).

On the other hand, from the discussion of case I we know that if Glk IllS

not continuous then

GIJ + 1(x) > 0, X E ('" " c 2k I I) = ( '" 'I I 2)'

Therefore we only have to consider the case when G ik + I is continuous. But
then by Bolzano's theorem there exists a point r E ('" y) such that
GI.kl t(r)=O, a contradiction. This completes the proof of Theorem I.

COROLLARY I. I. The degree oj' .1'11100 thness oj' GI.kl 1 at, I t 21 1

(1 ~ I ~ k) will not be affected if the odd interval 11 + 21 I is empty, i.e.,

, , + 2/ -- 1 = 'I + 21'
In other words, the degrees oj'smoothness oj' G ,.k + 1 at " I 2/ 1 and" I 21

are the same no matter" I 21 I equals", 21 or not.

COROLLAR Y 1.2. G ,.k + 1 is a polynomial oj'degree k on even intervals and
of degree k - I on odd intervals.

Proof By taking j = k - I in Lemma I and then using Proposition 4.



ALTERNATE SPLINE: A GENERALIZED B-SPLINE

3. ALTERNATE SPLINES AND B-SPLINES
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In this section we shall prove that B-spline is actually a special case of
alternate spline if the knots are chosen properly.

THEOREM 2. If the knot sequences I = {II} and t = {t l} satis/i' the con­
ditions t I = I 21 = I 21 - I then for all values of i and k (~ ) ) we have

where B'J + !.r is the ith B-spline of degree k f()r the knot sequence t.

Theorem 2 implies that for a given knot sequence I = (II} if all the odd
intervals of G,.k+ I.r are empty then G'J + 1.[ becomes a B-spline of degree k,
and if all the even intervals of Gi.k +!.r are empty then GrJ + I.r becomes a
B-spline of degree k - 1. This property of alternate splines shows that for
any given knot sequence t a proper knot sequence I can always be found so
that B-splines for t are equal to the corresponding alternate splines for I.

Therefore, a parametric B-spline curve is also a parametric alternate spline
curve, i.e., a parametric B-spline curve can always be represented by
alternate splines.

Before we give the proof of Theorem 2, let us recall from [), p, 13) ] the
definition of B-splines. For a given knot sequence t = {t l }, B-splines for the
knot sequence t can be recursively defined as follows:

f
),

B,u(x) = 0,

and

t,::;x<t 'f I

otherwise

for k ~ 1. It is easy to see that

x- t,

ti+1-t,'

t i + 2 -X

t i + 2-t'+I'

0,

Xi::;X<X'+1

otherwise.
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Now the proof of Theorem 2. By induction on k. It suffices to prove that
G2i.k + 1.r = B i •k + 1,1' Let k = I. By definition 1 we have

'2, :( X < , 2/ + 1

1, ' 2/ + 1 :( X < , 2i + 2

0. otherwise.

Since '2i+\='2/+2' i.e., ['2i+1,T 2/+ 2)=0, and 1/='21' 1
'
+ 1 ='2/+1'

1i+2='21+}' it follows that

!
(x - 1/)/(1 , + I - Ii)'

G:o i2r(x)= (t/+2- X )/(t,+2- l d I),

0,

= B,,2,(t)·

1'+1:(X<I/'2

otherwise

Now assume G 21 ,lil + 1.[ = B',III + 1.1 for all m < k. Then by assumption we have

if r"'Bu,(s)ds#O
<i(1

otherwise. (3.1 )

From [I, p. 151] with a slight modification we have the following formula
for the integration of B-splines

(3.2)

Therefore for any real number x by choosing a sufficiently large m so that
X:(IIII+1 then by (3.2) we have

(3.3 )
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and, similarly,

(3.4) follows from the fact that

, I
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(3.4 )

(3.5)
i= r -+ I k

if t,";;x";;t, [I, p.IIO]. Hence, by (3.1), (3.3), and (3.4),

If

III

A 2iJ +I.,(x) = I BU +I.I(x)
1=;

i
l

" k

if B1.k./(s) ds # O.
'1,

Le., ie"~,,, I G
2iJ

,,(s)ds=O,
"r2,

then, by Theorem 1, T 21 = T 2i + 2k _ i' or, t i = t i + k and therefore by (3.5) we
also have

'"
= I Bu+u(x)

1= i

if ii'" Bi.kl(s)dl·=O.
'I,

Therefore for any real number x, by choosing m large enough so that
x";; till + i' we always have the following equation

III

A 2i.k+ I,,(X)= I BU+i)x).
1= i

(3.6)

Similarly we can prove that, for any real number x, by choosing m large
enough so that x";; till + I then

111

A 21 + U +I.,(X)= I Bi.k+U(X)
i~I+1

(3.7)

(remember that T 2i + 1= T 2i + 2 ), and the theorem follows from (3.6), (3.7),
and (1.2).

Representation of alternate splines by B-splines is given in the following
theorem:

THEOREM 3. IjG i.k+ 1" is the ith alternate spline o[degree k (~O)for

640,'51,"~-5
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the knot sequence I = '\' II} then there exists k + I real numbers ,:x;lk + 1)
l,i '

1=0, I, ... , k, such that

k

Gik f I.,(X) = I:x;~.~ + II B,+!.k f 1.,(.\)
I ()

for all x where ':x;i~ f II, 1=0, 1,... , k, can be defined recursively for k as
follows:

and

for k > °with

1=0,1,..., k

i I /

!
'\' aikl(I '-. I/,)/A,lk l,

(It. +-1) _ l.~_ I /./ itf.:.
(I1.f - I I

[,

I I- k I

1;kl= I a)kli,(Irfk--Ir)'

/-=-1

and

otherwise,

(3.8)

Proal By induction on k. When k = °the theorem follows directly from
the definition of G,.I., and B;.I.,' Now assume the theorem holds for all
m < k. We have by induction hypothesis that

k I

G ( .)- '\' IklB (.)
i.k.,'\ - ~ .'Y,,/.i i+ I.A.I S .

I~()

By finding m large enough so that x ~ IIII • I then by (3.2) we have

rG;,k,T(S) ds = I~; (tat! i.1 (I j ! k - Ij)/k) BI,k + 1.T(x).

Since Bik + 1.,(t)=0 if t$ [I" I, j k+ IJ, it follows that

f"'" I GikJ(S) ds
~ 'I

(3.9)
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Furthermore, since CI:~~ 1= 0 if I> k - 1, we have

j"'f2' 1Gi.kr(s)ds
r,
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{ 11k

L iJjklB lk 1 1.r(I i +2k ,)/k
{ i + k 1

and then by (3.5)

or

Again, since !X~~I=O if l>k -1, (3.9) can be simplified as

(310)

+
m

L
(o i + k 1

Therefore if () l.k.T *0 then by (1.3) and (3.10)

or

+
m

L
{ 1 + k 1

(3.11 )

This is because that, from the definition of iJjk l and induction hypothesis,

i +-1

" (k) ( )'A1k1_]L.!Xj I.i Ii + k - I j / LJ 1 -

1=(
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if 1= k - 1 or k. On the other hand, if <5 ;,1, T = 0 then by (1.4) and Theorem 1
we can conclude that 1;=1'+2k I' Hence by (3.5) we have

'"
A lk I I.r(xj = n"rr(X) = I B ik j I.,(X)

/ ,

for a sufficiently large m, or

i j k

Au I I,,(X) = L Bu I IT(X) +
1=--,-1 /= I + J" + 1

k

= I B'+Ik+I.T(X)+
I" () I

Therefore by (3.11) and (3.12) we then get

'"I Bik + lIt).
i + k + I

(3,12)

k

A,.k+I.,(X)= L a)~+I)B,+IkII,r(X)
I~O

+ (3.13 )
( i +- k + I

with a;~ + II defined as in (3,8). Similarly, it can be proved that

k

A,'2k+ I.T(X) = L a;,~1iIB" 2+1k I IT(X)
I ()

+
"'L

I, 2

A i + 2,ktl,T(X)= L aj.~:i)Bi+2+I,k+l,r(X)+ L
I=() I~i+k+l

I,

= I- a}k"2~~2Bi+lk+ I,(X)+ I-
Icc 0 1=,; +k I I

Bik + 1.,(x)

(3.14 )

by setting a lk {,I} 2= a lk i.,t~ 2= O. The theorem now follows from (3.13),
(3.14), and (1.2).

COROLLARY 3.1. lithe knot sequence 1 = {T I} is uniformly spaced then
for integers k (> 0) and i we have
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Proal yj~ + 1J is determined by the relative position of T" T i + I, ... ,

T 1+ 2k C l' Hence if T is uniformly spaced then, for any 1E {O, I, .. , k} and
integers sand t, we have

If we replace yj~ t 11 by yjk" 1) and simplify the recurrence relation ofyj.~ + I)

in Theorem 3 to be as follows:

1=0,1'00" k

where ylk: =y1kl = 0, then it is easy to see by induction that

±y;k + I) = 2 and Y-jk f 1) = (~)! 2k
I

i II

and the proof of the corollary is complete
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