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1. INTRODUCTION
An alternate spline of degree k can be defined in the following way:
DeriNITION 1. Let 1= {1,} be a knot sequence. The i th alrernate spline

of degree k (order k+1, k=0) for the knot sequence 7. denoted by
Gy s 10 18 defined recursively by the following procedure:

G ()—; 1, T,\<\>\-<TA+| (ll
i A X )= 0. otherwise -

and
GipyiodXi=A, )= A4, 5,0 (x) (1.2)
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for k=1, where

[ Grdsrdsso . it 0,,#0

Ak 1:(x) =
7, A x), otherwise

with

T 24
(ji.k.r = J 1 Gi‘/\"r(s) ds

T

and

{O. X <1,
ni‘r(x) =

I, x>1;

139

(1.3)

(1.5)

Whenever the knot sequence t can be inferred from the context, we write
G,, instead of G, ., 4, instead of 4, ., J,, nstead of §,, , and =, instead

of m, .

We can use equalities (1.1}-(1.5) to express explicitly the lower degree
alternate splines for a given knot sequence. For example, when t is

uniformly spaced, we have

(x —1;)/ 47, T, <x<1,,,
I Tis 1 SX<T,,,
Go(x)=
‘ (T4 3— x)/ 41, T SX< T,
0, otherwise.
[ (x —1,)%/4 (47)%, T, X< T,
14+ (x —1;,,)/241, T, Sx<T,,,
1= (t,, —x)*/4(47)?

Gia(x) = (X =T ) YAMAT, TS X<,
3/4 — (x — 1,4 3)/24r, TS X<T, 4
(T,45s— X)7/4(41), T, aS<X<Tiys

|0, otherwise

640/51,2-4
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and
((x—1,)/24 (41)’, 1,€x<1;,,

| 124+ (x —1,, ,)/841

+(x—1,,,)/8 (41), T, SX<T;,
/44 (x—1,,,)241

+ (1, x)24(47)?

—(x—1,,,)Y/12 (47)", T2 SX<T,, 5
234 (x—1,,3)/441
Galx)=x —(x—1,, )74 (41)7, T3 SX<T;,4
3/4 —(x—1,,4)24

—(1,,5s—x)/12 (41)}

+ (X —1,,4)/24 (41)°, T, a<X<T,, 5

7/24 —3(x—1;,5)/841

2 2 .
+(.Y_T,-+5)-’,’8(AT), ‘[l+5<'\<‘[1+6
k 3 .
(Tl+7_-\‘)z//24 (AT) » ‘[’-I+6<'\<T}+7
0, otherwise

where At is the distance between two consecutive knots. Note that
G, is composed of polynomials of degree one and zero alternately, G, is
composed of polynomials of degree two and one alternately, and, G, 1s
composed of polynomials of degree three and two alternately. Examples of
G,», G5 and G,, for a uniformly spaced knot sequence t are shown in
Fig. 1.

When a set of 3D vectors {C,} is given, by using alternate splines defined
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in Definition I, we can define alternate spline curves of degree k the
following way:

r(x)ZZCiGZI,k+1,r(x) (1.6)

or
"(X)IZ CiGay i) (1.7)

Parametric curves constructed this way are of some interest in that they are
composed of polynomials of degree k& and k — 1 alternately and, still, are of
class C* ' as well be seen later in Section 2.

2. PROPERTIES AND PROOFS

Properties of alternate splines will be discussed in this section. We shall
call simple facts “propositions” and leave them without proof.
Let 7= {1,} be a knot sequence and 1+ xo,= {1,+ xo| 1,67}, k= 0.

PROPOSITION 1. (1) Gy yop (X +X0) = Gsy (X)),

(1) G,y . depends on T,,.., T, 5 ., OHIY.

PROPOSITION 2. The support of G, ., for all values of i and k, is finite.
More precisely,

G:.A+1(X):O f()r .\‘¢[T,-,T,-+2,‘,* l]~

PROPOSITION 3. We have

[(s-1)/2]
(1) Z Goprrodx)= Z Goin 1 x)=1
i i={(r -2k +1)/2)
and
[(s 2)/2]
(i) ZG2/’+1.k+I.r(x): Z Gayivrarrcx)=1
i i=Lr 2k)21

for all xe(z,, 7,).
A principal property of alternate splines is given in the following
proposition. We need a definition first.

DeFiNtTION 2. For the knot sequence 1= {t,}, £, , 5= [Ti4 2 Tiv 2411
[=0, 1,.., k, are called the even intervals of the alternate spline G,, , , . and



142 BIEN AND CHENG

Livorov=Tis 1y Tinals I=1,2,.,k, are called the odd intervals of
GLk + 1t

PropoOSITION 4. G, . is a polynomial of degree <k in an even interval
and a polynomial of degree <k —1 in an odd interval.

The next theorem will be discussing the effect of multiple knots in the
knot sequence for alternate splines. But, first of all, the definition of mul-
tiple knots.

DerINITION 3. Let 1,=7, (s<t) be two knots contained in
[7;« T,5 2 4 1 | such that no other knots in [1,, 7, 5. ] equal to 7, except
Toy1see T, . M there are m even intervals of G, ., [, 5, .. [=0, L.,
n—1, contained in [t,, 7,] then 7,=r1, 1s called an (n) mudtiple knot of
Gix 4. of multiplicity n.

THEOREM 1. The following two statements are true for all non-negative
integer k:
PR G () >0, xe (T, 1, 500 0)
IT (k): If =, 1s an (#) multiple knot of G, ,, and n <k — 1 then G, |
has continuous (kK — 1 —n)th derivative at t, but the (kK —n)th derivative

does not exist; if n =4 then G,, , , is not continuous at 7,; if n =k + | then
Gy =0.

The proof of this theorem requires several auxiliary results. We will first
prove these results and then Theorem 1.

LEMMA L. If the statements 1 (1) and 11 {l) in Theorem 1 hold for
I=1,2,..k—1 then for any integer j, 0<j<k, we can abvays find j+ 1
positive real numbers C,, =0, 1., j, such that

/
G ) =2 (=D GGy i(X) (2.1)

/=0

Jor all x in [1;, 7,, 5, 1] except, possibly, at a finite number of knots where

(2.1) does not hold.

Proof. When j=0 the lemma is obviously true. To prove the lemma is
true for an arbitrary j> 1, assume the lemma holds for all m <. We have
by induction hypothesis that there exist j positive real numbers C,
[=0,1,.., j— 1, such that, except at a finite number of knots,

/ 1
Gl Mx) = Z (=1 CiGryage 5y 20x) (2.2)

=0
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for all x in [1,,7,, 2 ). Now consider A4}, 5,
different cases: 0,, 54 ;4 =0and #0.
If 6, 2k , =0 then we have by definition that

Jjt2 /:07 1""7j’ in two

i+
A,y 2= Tiq o

Therefore, A}, 5, ;.. equals zero at all points except 1, .. On the other
hand we have by I (k —j) and IT (k —) that

(1;+2/_/\» J+1 =0.

Hence, in this case, we have
A%y ok /+2(X):Gi+ AUk b W{x) (2.3)

for all x except the point t,, -,

If0,, 5% ,+1#0then G, », ,,, can have at most one (k —;) multiple
knot of multiplicity k —; and it is either t,,, or 1, ,,,- Therefore by
Il (k—j) it can be concluded that G, ., ,.; is continuous everywhere
except, possibly, at either t,,,, or t,,,,,,,  But then we have, when
YERVIT, o Tivaw ey

Ai s /+z(-\') =G,y j+ 1(x)/0, ¥ 2kt (2.4)

Therefore if we set

, N
N _{1/6i+2/.k j4 b ‘)i+2/.k—/‘+1¢0
N

o : 2.5
Ay k 1, otherwise, (22)

then when xe R\ {t,, », T;4 20+ 1,) We have, from (2.3) and (2.4),

’

Ao o2 =Aiiok o1 Grvane -1 (X)
This is also true for A, ..« ,+2. Hence from the definition of
G,.x ;1o we have that, for all xe R\{7;, 2, Tiy20a1) Tivaue ) fs
, .
Giiok e 2= Aok 1 O k-1 (X)
~Aivaur k-1 Gitaue k- jv1(X),

/=0, 1,..,j. Substitute these equations into (2.2) then we have, for all
Xe [Tn Ti+2k+l]\{ria Tiv s Ti+2k+l}’ that

/
G () =2 (=) (C,  +C) hiare 1 Gk o 1(X)
=0

where ¢, =C,=0. From (2.5) and I(k—j) it can be seen that

Aivak -+ >0 and the proof of the lemma is complete.
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LEMMA 2. If the statements 1(k—1) and 11 (k— 1) in Theorem 1 are
true for a positive integer k (k= 1) then

(1Y If 1, is an (k) multiple knot of G, , | then

Gl.k + l(x) = TC,-(.\') - ‘ (;r i 2./\'('?) lls//(jl ) 2k

(i) I v,y 0. is an (k) multiple knot of G,, , | then

A

Gos )= G ls)ds/o, 7, a(x)

Proof. 1t suffices to prove (i). Since 7, is a {k) multiple knot of G, , |, it
is also a (k) multiple knot of G,,. We have then by II(k—1) that
G (x)=0 or, equivalently, 9, =0. Therefore 4,, , |, =m,.

Furthermore, since t, 1s a (k) multiple knot of G, ., it follows that
T, 27 Tis 2. - But then by [ (k— 1) that

Giopl8) ds #0

(r,vu‘.l

or, equivalently, o, ,, #0. Hence

Al+lk + 1(*\‘) - ‘ G/ + Z_l"(;‘\') ([Sr/’(jl v 2k

VT2

and (i) follows.

LEMMA 3. A real-valued function [ has n distinct zeros in the interval
La, b]. If f satisties the following bwo conditions:

(1) [ is continuous at each of these n zeros, and

(11} [’ does not exist at m points in (a, b) then the number of distinct
zeros of [ in (a, b) is at least n — 1 — m.

Proof. Assume the n distinct zeros of fare: a < x, <x,< - <x,<b U
/7 exists at all the points of the open interval (x;, x,, ;) then by Rolle’s
Theorem we know that f” has at least one zero in (x,, x; ). Since, by (ii),
there are at most m distinct open intervals in the n—1 open intervals
(x;, x;.4) i=1,., n—1, which contains one of the points where /" does
not exist, therefore, the number of distinct zeros of /' is at least n — 1 — m.

Lemma 4. Let {N,,N,...N,| (N <N,<---<N,) be the set of

positive integers such that each number in this set is the multiplicity of some
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multiple knot of G, . G,r,, has no multiple knot of multiplicity k or
greater. For each te {1,2,.., p} define

A, = {z,}7,is a multiple knot of G, , , with multiplicity > N, }

and set Noy=0. Furthermore, for each non-negative integer j, let Z, denote the
number of distinct zeros of GY),, in (1,7, .., ). Then for any
te{l,2,.,p}if

k—1—N,,, <j<k—-1-N,,
and 11 (k) in Theorem 1 holds then
Z =22+ t—=]A4,,, |
Proof. The proof will be discussed in four cases.

[ Tis Zi+2k+l¢A/’+—l I

Since in this case none of 7, and 7, 5., is a multiple knot of G, , of
multiplicity greater than N, , and j<k—1-N, ., it follows by II (k)
that G, | is continuous at 7, and r, _,, , ;. Hence by Proposition 2 we can
conclude that

G(Ajﬁl( ) Gl(i+l( 1+2/\'+]):Os
ie, G, has Z +2 distinct zeros in [1,,7,, 5 ., ]. Furthermore we can
also tell that G‘” is continuous at all these zeros because by

ik +1

Proposition 4 and 1I (k) we know that if G!7, | exists at x then GY/, | 1s

continuous there. Next look at the points where G!;"") does not exist. By
I1 (k) we know

k—1—=N,, , ,<j<k—1-=N, _,

then G',"') does not exist at the points of 4,,, S (1,.7,,%,,) only.

Hence by Lemma 3 we have

/+1 (Z+2 _|Ap»] l|
or,
Ziwz2Zi+ 1A, |
I Tr'EAp+l I T1+2/\'+I¢Ap+l -

Since the fact that j<k—1—N, , implies that G, (t,, 5., =0, it
follows that G'7,, has at least Z,+ 1 distinct zeros in [1,, 7, 5 ,,] and

G, | is continuous at all these points,
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Since G{/*,'! does not exist only at the pointsof 4,,; ,andt,€e4,,, .,
it follows that GY%') does not exist in (r,1,,,;) only at most at
|4,,, ,|—1 points. Hence by Lemma 3 we have

Zyz(Z+ ) =1=4,,, [|=1)

:Z/+141A/)+1 /|'

1L T:¢‘4/1+1 lvrl+2A+l€A/>}l [

This case can be processed the same way as case I1.
IV. 1.1, 4,64

! ptlor

G!/), | has Z, distinct zeros in (1, 1,, 5 ,,), and G}, | is continuous at
these points. Smce Gl %) does not exist only at the points of 4,,, , and
T T €A, . it follows that in (z,, 7, 5, ) G{,"" does not exist
at. at most, |4, ,| -2 points. Hence by Lemma 3 we have

Z, . 2Z,—1-(4
—Z, 414

ri‘_z)

p+1
prl 1\

and the proof of Lemma 4 is complete.

LEMMA 5. If the statements | (1), [=0, 1,.., k—1, and 11 (I}, [=0, 1,...,
k, are all true then G, . (x)#0 for all x in (T, T, 541 )

Proof. There are three cases to consider:
I. G, has (k+1) multiple knot.
In this case (1, T, %, 1) I1s empty and the lemma is obviously true.

II. G, has (k) multiple knots but no (k+ 1) multiple knot.
In this case a (k) multiple knot would either be 1; or 7, ,,,,,. Without
loss of generality we may assume that 7, is an (k) multiple knot of G, , |.
In that case we have by Lemma 2 that

G ifx)=m{x)— Jﬂ G, 24(5) (I'Y/éi+2,k'

Then by I (k—1) we have, for xe (1, 7, ), that

6r+2.k>J‘V G,+7A( )dS'>O

Tiad

or

1 (x)> [ Gyaxls) sl oy

T2
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Hence
G () =)= [ Gyoopls) s/, 24> 0
forall xe(t,, T, 2 41)
HI. G, ., has no multiple knot of multiplicity & or greater.
In this case let {N,, N,,., N,} (N, <N, < <N,) be the set of positive

integers such that each number in this set is the multiplicity of some mul-
tiple knot of G, ,,. For each re {1,2,..., p} define

A,={t,]t,is a muitiple knot of G , |
with multiplicity = N, |
and set No=0, N,,, =k — 1. For each nonnegative integer j, let Z, denote

the number of distinct zeros of G'/, |, in (7, 7,,5,y). Then for each
te {1,2,.,p} by applying Lemma4 N,,, ,—N, , times we have

P
i vong 2k o, =14, 00 DN, —N,_). (26)
(2.6) is true even when =0 as can be seen below.
. N,=N,, =k—1

In this case (2.6) is obviously true when r=0.
II. N,<N,, ,=k-1

Pt
Then for any nonnegative integer j<k—1—N,, G!/,, is continuous on

[t tivuyidand G (1) =G, (t,.5 . 1)=0. Hence G},  has Z,+2

distinct zeros in [, t,, 2. ]. By applying Rolle’s theorem we have, for

each 0<j<k—1-N,,

Z, =27+ 1

Therefore

Zi w2 Zotk-1-N,

and this is exactly what we have when 0 is substituted into (2.6) for ¢
Hence (2.6) is true for re {0, 1, 2,.., p}.
By adding (2.6)’s up for 1=0, 1,.., p we have

14
Zi 1 2Zo+ Y (1= 14, )N, =N, )

=0

=Zy+ Y (1—[A)N,~N, ). (2.7)

t=1
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Since
P

Z (N,—N,il):k*—l and |A/)+II(N/)+1“N/7):O

t=1

(2.7) can be further simplified as

/)
Zy \2Zytk—1— Y [AN =N, )

t=1

=Zotk—1-Y n, (2.8)

l=1

Now if G, . ((x})=0 for some x in (7,7, 2, ) L€, Zg=1, then from
(2.8) we get
Zo  z2k=Y n,. (2.9)

=1

On the other hand, by Lemma 1 we know there exist kK positive numbers
C,, 1=0,1,.,k—1, such that, except for a finite number of knots where

G4\ does not exist,

kol
G}AA »II]('Y): Z (*l)l C/G,urz/‘z(x) (2.10)

/=0

for all xin [, 7,0 ] But, if none of 7, and 7,, 5, ; 1s a multiple knot
of G,, ,, then from (2.10) we arrive at the following result:

Zy =k=1=-3 n

I=1

which is contrary to (2.9). Hence G, , ;(x)#0 for all x in (t;, 7, 5. 1)

Now the Proof of Theorem 1. By induction on k. When k=0 the
theorem follows directly from (1.1). Now assume the theorem holds for all
m < k and prove that it is also true for k. We will prove II (k) first and then
I (k). The proof of IT (k) 1s discussed in three cases.

Casel:n=k + 1.

In this case both G, and G, ,, have a multiple knot of multiplicity 4,
and so by 1T (k—1), G;, =0 and G,, ,,=0. But then G, , , =0 too!
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Case 1I: n=k.

In this case either 7; or 7, 5, 1s a (k) multiple knot of G, . ,, say, 7,.
Then by Lemma 2 we have

ARY

Gy ((X)=m(x)~ G,y oxls)dsio, 5y,

RIS
and so G,, ., is not continuous at t,.

Case TII: n<k—1.

In this case a (#) multiple knot of G,, will be a (n) or (n— 1) multiple
knot of G,,. This is also true for G, ,,. No matter which case happens
since in this case (1, T, )# D and (1,1, T4 . 1) # & it follows from
1 (k—1) and the definition of G,, ., that

Gor¥)= | GV o~ [ Gronals)dsforae,  (211)

T Ti2

therefore G,,,, is continuous everywhere. If » <k —1 then, since by
MM(k—1) we know that G, and G, ,, have at least continuous
(k —2—n)th derivative at (n) multiple knots of G,, ., it follows from
(2.11) that G, ,, has continuous (k —1—n)th derivative at (#) multiple
knots. Next we shall show that G% "’ does not exist at (n) multiple knot.
Let 7,,,, be a (n) multiple knot of G, ,,. f n=k—1 then 1,,,,=1,.
T,i2s O T,yokyg. Say, T;,5,=1,. Since {1,717, ) and (7,, -,
T )ED, by Lik—1), (1.2) and (1.3) G,, ., , can be expressed as

A

Giils)ds/o,  — (\‘ Giyails)ds/o;, oy

Y1, v

Gigyix)=

Tl

However, since 7, is a (k — 1) multiple knot of G, it follows by Lemma 2
that

G ls)=m(s)— ‘ Giyap (1) atfo; sy

and so G, is not continuous at 7,. Therefore, the derivative of G, , ((x)
does not exist at 7,. The cases when 1, ,;=1,,,and 7, .., can be proved
in a similar way.

If n<k—1 then by the fact that G}’ " is continuous at z,,,, and
Lemma 1 we can find k - n positive numbers C,, /=0, 1,.., k—1—n, and a

neighborhood, N(z,, 5), of 7,, 5 such that for all x in N(z,,,))
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kYoo

Gﬁ’;\ +1] ]”(X) = Z ( o 1 )[ (lel + 2k 2("’()
{=0

5

:(‘—1)/ ‘((ﬁ/ 2G1+ 2 ZLHJr?_(x)
"C/ 1Gz+m 1ot + z(-\')‘f‘C,sz,,u+z(»’())

+ Z (71)[6‘/(":%2/.,1472(-‘()' (2.12)

Since, by Il (n+ 1), the derivative of the last term of (2.12) exists at 7, , 5,
to prove that the derivative of G, , | at 1, ,, does not exist, we only have
to show that the derivative of

(‘ ZGlJrll/ Z).uqtlg(‘/ ]Gr+—2(/ |)<r112+(w/'Gl+ RIRT IR (213)

/

at ,, , does not exist. Rewrite {2.13) as

(C/ ZAI + 205 2)JI+2¥C/AI+2(/4 Lot 2)
7(((‘ 2+(‘/ I)Alill/ ||./1027(C‘

7

y+C) A 0) (2.14)

/

Then the first part can be ignored again because derivative of it at 1, ,,
exists. Now since 1, »; is a (1) multiple knot of G, , ,,,,, , and « (n) multiple
knotof G, 5, 1..+1, by Lemma 2 the second part of (2.14) can be formed
as

- <UJ Tit o) I](Jb Ti+2(,1)Gf+2(,/|>.n(f)dt> ds)
+bj T:‘+2/<J Ti+2(/+l‘)Gz'+2(j+l).n(t)dt>ds)
[ g oleF D) ds (2.15)

where

U:(C, 2'*‘C, . 1)/(5i+2(/r 1)‘»1'5”2(, 1)‘n+1),

b=(C, +CHO0vai411m Oitajms 1 h

2T C 0o 1y >0,

1+ C)O a1 >0

Derivative of the first part of (2.15) at t,,,, exists. But derivative of the

second part at 1, , does not exist. Therefore G} does not exist at the
(n) multiple knot 7, , 5.
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Now the proof of I(k). If xe(z;, 1,,,) then by I(k — 1) and Proposition 2
we have 4,, . (x)>0and 4,,,,, ,(x)=0. Therefore

Gus (0)>0 i xe(r,7,,5) (2.16)

This 1s also true for (t;, » _ > T; v 24 1)- Hence to prove I (k) we only have
to show that G, , ,>0o0n [1,,,, T, 2 1]

Now assume, on the contrary, that G,,, ,(y)<0 for some p in
LT3, Tiv ok 1) Since (t;, 7,4 54 ) # T, T, can not be a (k+ 1) multiple
knot of G, , . Hence we have only two cases to consider: 7, is not a mul-
tiple knot, and, 1, is an {n) multiple knot of G,, , , but 0 <n<k.

Case 1. 1, is not a multiple knot of G, _ ;.

In this case G,, ., must be continuous. For, otherwise, G,,,, would
have a (k) multiple knot and it could only be t,,,,,, but then
(t,o Ty 1) =(1,, 7,5 ») and by (2.16) we have G, (y)>0 contrary to
the assumption. However, if G, ., is continuous in [1,, 7, % ,,] and
{1, 7, 2) % & then by (2.16) and Bolzano’s theorem, G, , , has a zero in
(t,, v'). a contradiction to Lemma 5.

Case 1. 7, is an (#) multiple knot of G,,, , and 1 <n<k.
In this case by Lemma 1 there exist C,>0, [=0, 1,..., kK —n, such that

k -n
GhiN) =3 (1) CiGipgpi(X) (2.17)
/=0
for all xin [7,,7,, ., ] except at a finite number of knots. Since t, is an
(n) multiple knot of G,, , , we have by Lemma 2 that if n 50 then

Gi.)z + l(x) = n[(x) ;J Gl + Z.rl(s) d‘v/(sfﬁL 2.

and consequently
GL11+1(T1)>O and Gi‘n+l€C(tH +%) (218)
(2.18) 1s also true when n=0 by checking the definition of G,,. Further-

more, since 1, is an (n) multiple knot of G,,.,, it follows that
Tiv 2 <Tit2n41s and therefore

Gipatnst EC(— 90, T 50 1)s [=1,2...k—n
Consequently, by Proposition 2,

Giyonii(t)=0, I1=1,2, k—n (2.19)
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But then by (2.17), (2.18), and (2.19) we have
k- n

Z ('1)[ C/GI%Z/JI + l(ti)>0

=0

and

k -n
Z (—il)/ (‘/Gl+2/<”%‘ ECV[TN Tiyoom rl)'
=0

Therefore there exists an ¢ >0 such that
G mel(r,t,+¢)  and G "(x)>0
for xe(t;, t,+e)
Since for j=1, 2,.., k —n we have
Gy =] G (s)ds,  e(rr+e,
it follows that

G (x)>0 for Xe(t,t,+¢e)

On the other hand, from the discussion of case I we know that if G,, , | is
not continuous then

G ((X)>0,xe(t.7,, 0, )=(1,.T,, )

Therefore we only have to consider the case when G, , , is continuous. But
then by Bolzano’s theorem there exists a point re(1,, ¥) such that
Gy, 1(1)=0, a contradiction. This completes the proof of Theorem 1.

CoRrROLLARY L1.1. The degree of smoothness of G, ,, at t;,
(1</<k) will not be affected if the odd interval I,,,, | 1s empty, Le.
Tivor-1 =T

In other words, the degrees of smoothness of G, at 1., , and 1, , 5
are the same no matter 1, 5, | equals t,; . 5, or not.

COROLLARY 1.2, G, is a polynomial of degree k on even intervals and
of degree k — 1 on odd intervals.

Proof. By taking j=k —1 in Lemma 1 and then using Proposition 4.
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3. ALTERNATE SPLINES AND B-SPLINES

In this section we shall prove that B-spline is actually a special case of
alternate spline if the knots are chosen properly.

THEOREM 2. If the knot sequences t={1,} and t={1,} satisfy the con-
ditions t;=1,,=1,,_ then for all values of i and k (=1) we have

GZi,k + 1= Gz,' Lk+217 Bi.k + 1.1

where B, , |, is the ith B-spline of degree k for the knot sequence 1.

Theorem 2 implies that for a given knot sequence v = {t,} if all the odd
intervals of G, , |, are empty then G, , ,, becomes a B-spline of degree £,
and if all the even intervals of G, , . are empty then G, ,,, becomes a
B-spline of degree & — 1. This property of alternate splines shows that for
any given knot sequence 7 a proper knot sequence 7 can always be found so
that B-splines for 7 are equal to the corresponding alternate splines for t.
Therefore, a parametric B-spline curve is also a parametric alternate spline
curve, 1e, a parametric B-spline curve can always be represented by
alternate splines.

Before we give the proof of Theorem 2, let us recall from [ 1, p, 1317 the
definition of B-splines. For a given knot sequence ¢ = {7,}, B-splines for the
knot sequence r can be recursively defined as follows:

B (v) 1, L <ty
X)= )
nh 0, otherwise
and
X1 Liviky1—X
Bi,k + 1_,()() = Bi.k,l(x} +— Bi+ l,k.l(x)
[1+k_ti [r’+k+—l‘li+—l
for k= 1. It is easy to see that
x—1,
> XX <X,
li+1_[l'
Bi.z.r(x): _1_—_’ X1 SX<Xx;,,
ti+2ﬁri+]

0, otherwise.
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Now the proof of Theorem 2. By induction on k. It suffices to prove that
Goyiporo=B. .1, Let k=1. By definition 1 we have

(X =)/ (T 1 — Tai)s Ty SX< Ty

. i 17 T21»+1<,\"<'L'2/+2
Gao (x)= )
(Toj v 3= X)) (Toiea—Top2h Torp 1 SX<Tyu;

0, otherwise.

SinCC Toipr = Tary 2 i.C., [TZI+1’TZi+3,):®7 and ti:TZJ* 11+l:‘52itlﬁ
l;+2=Ta 3. it follows that

(x =)t — 1), LX<t
Goolx)=( (1 = X)), Ly Sx<i;,
0, otherwise
=B,,.(1)

Now assume G, .= B,,,, 1, for all m <k. Then by assumption we have

f\ B, (5) defﬁf’Jn/HA B k. (s) ds,

4

Asips . x)= if * ! B, (s)ds#0

v,

; (X)), otherwise. (3.1)

From [1, p. I51] with a slight modification we have the following formula
for the integration of B-splines

Ay N m

/
' Z a By As)ds = Z (Z oty — /k> By 1.0x)s

o= =i

X<t - (3.2}

Therefore for any real number x by choosing a sufficiently large m so that
x<t, ., then by (3.2) we have

J‘X Bi.k.t(s) ds= (ti+k - ti)< i Bl‘k+ 1,1(5))/’/( (33)
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and, similarly,

[ By ds= (1,0~ 1k (34)

(3.4) follows from the fact that

SBudx)= L Bux)=1 (35)

i=r+1 -k
if r,<x<t, [1, p. 110]. Hence, by (3.1), (3.3), and (3.4),

m

Ao )= Y, B )i [ Bl (s) ds #0.
I=i

Yy,

If

ik . T2 2k -1
j B (s)ds=0, ie. | G o) ds =0,
then, by Theorem 1, 1,5, =14, 5 _;, OI, t;=1,,, and therefore by (3.5) we
also have

AZi.k + Lr(x) = 7’[,_,(.\')

" Ak

= Z Bl,k + Lr(x) if i Bi./\’.l(s) ds=0.
i1=i

v,

Therefore for any real number x, by choosing m large enough so that
x<t,,,, we always have the following equation

m

Aip i x)= Z By Ax) (3.6)
ha

Similarly we can prove that, for any real number x, by choosing m large
enough so that x <, then

m

Aok rdx)=Y B, (x) (3.7)

I=1i+1

(remember that 7,,,,=1,,,,), and the theorem follows from (3.6), (3.7).
and (1.2).

Representation of alternate splines by B-splines is given in the following
theorem:

THEOREM 3. If G, . is the ith alternate spline of degree k (=0) for

640:51/2-5
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the knot sequence t=1{t1,} then there exists k+ 1 real numbers a{%+"),
[=0,1,.., k, such that

k

Goppolx Z 3‘ "B,y a1 dX)
/0
for all x where o' " /=0, 1., k, can be defined recursively for k as
follows:
()
y()l l
and
ah T = glh e gkt [=0,1,.,k
for k>0 with
iy
(k) - WiLs! MY (ky
h+ 1) Z (X/- I.!(T/w"\ T/)'/Ai * lf At ¢0
al.l VA
[, otherwise,
PR A i
(k) 1k
/Il = Z “/ “(f,'/\. - I/)' (38)
j=i
and
ot =a*] =g, =0.

Proof. By induction on k. When k =0 the theorem follows directly from
the definition of G,,. and B,,,. Now assume the theorem holds for all
m < k. We have by induction hypothesis that

k-1
Gl./\’,f(‘y) = Z fx;./:)Bl + /./\.I(S)'
/=0
By finding m large enough so that x <<, ., then by (3.2) we have

. m I
j Girls)ds= z < Z “,‘-k],;, (T4 — T/)/") By 12(x). (39)

=i Nj=i

Since B, ., (ty=01fr¢[t,, 7,4 ], it follows that
i”’ o G s)ds

- Z (Z "”"(THA'— T/)/k> Biir T i)

I=i+k~1 \j=i
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Furthermore, since a/%'=0if />k — 1, we have

Tk 2%
J 1 Gy (s)ds

T

ni r+hk
A i (
= Z < Z ot ATy, A'T/)//‘> Bt 1)
1

Lotk jo

m

= Z AFB AT )k

f-di 4k ]

and then by (3.5)

r”xl Gy ls)ds =A%k

v

or
g = ANk, (3.10)

Again, since «/%' =0 if />k — 1, (3.9) can be simplified as

rx ithk-2

lkt()ds— Z

Yo /

<Z xm Tk — ~)/k> By 1(x)

i =i

nr

+ Z (Aik'/k) B/.k + I_r('\-)~

T=i+ Kk 1
Therefore if §,, . %0 then by (1.3) and (3.10)

i+

IS
Ai,/x'Jrl‘!(x): Z
I=1

or

k i+
AI/\+1T Z <Z al /+k ')//Ajk)> Bi+l4k+l.r('\‘)

[=0 Nj=i

"

+ Y Bl (3.11)

I=i+k+1
This is because that, from the definition of 4% and induction hypothesis,

it
k I AKY
Z d( ) Tjv k™ )/A:( =1

j=i
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if /=k—1 or k. On the other hand, if ¢,, , =0 then by (1.4) and Theorem 1
we can conclude that r,=1,,_,, . Hence by (3.5) we have

AIA/\’ t l‘z(~\‘) = T[l_n(x): 2 B/‘/\' + 1.{('Y)
[

for a sufficiently large m, or

itk m
ik s Z By idx Z Biyiidx)
J=j+ 4k +1
= Z BI+/J\+ l.r('\’)+ Z B/‘krkl.r('\/)' (312)
/=0 fodi+ k4]

Therefore by (3.11) and (3.12) we then get

Ayl Z a(AH By iy 1.x)
+ Y Buaidx) (3.13)
[oe it k4|

with a{* " defined as in (3.8). Similarly, it can be proved that

— A+ 1) )
AI 7/\1\11 —'Zall+" B!‘z+/,/\4|‘f('\)

L O

m

+ Z B/.A + Lr(-\‘)

[~i+hk 3
for the same . Since al* ''} ,=al** =1 it follows that
ko 1i+2 kai+2

m

Aiyag e alx z a?ffw' B:+7+/A+1r(’f)+ Z B (x)
le=i+k+1 (314)
- Z a;/\t:$z itk e 12 (X)F Z By x)
I=0 l=i+hk 1
by setting a'* '), =a"* "), =0. The theorem now follows from (3.13),

(3.14), and (1.2).

COROLLARY 3.1. If the knot sequence T={1,} is uniformly spaced then
for integers k (>0) and i we have

Lork
Gz}k+l‘r(x): Z (1> Bl+/l\ 4 lr /2/ 1'

/=0
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Proof. ak+ 1 is determined by the relative position of 7, 1,,,,..,
T,, .. Hence if 7 is uniformly spaced then, for any /e {0, 1,.., k} and
integers s and ¢, we have

(k+ 1) __ Alk+1)
al‘.s _Cx/.l .

If we replace 2/% ' 1 by «/** ') and simplify the recurrence relation of aft + !
in Theorem 3 to be as follows:

ik 1

k1) o lk Y k _ A
af P = )Y a, 1=0,1,k

P00
where 2% =o' =0, then it is easy to see by induction that
A /( /
th+ 1) . (h+ 1) Y
Y oakr =2 and 4 —<1>’,2
j=0 !

and the proof of the corollary is complete

ACKNOWLEDGMENT
The authors are grateful to the referce for many valuable suggestions on a previous draft. It

is also pointed out by the referee that the non-negativeness of alternate splines proved in
Theorem 1 can be derived directly from Section 10.4 of [2].

REFERENCES

1. C. bE BooRr, A Practical Guide to Splines,” Springer-Verlag, Berlin/New York, 1978.
2. S. KarwiN, “Total Positivity,” Vol. 1, Stanford Univ. Press; Stanford, CA, 1968.



